This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

The Synthesis of 2'-C-Functionalised Nucleosides for Incorporation into Catalytic RNA

Anthony J. Lawrence^a; John B. J. Pavey^a; Ian A. O'Neil^a; Richard Cosstick^a
^a Robert Robinson Labs., Dept. of Chemistry, University of Liverpool, Liverpool, U. K.

To cite this Article Lawrence, Anthony J. , Pavey, John B. J. , O'Neil, Ian A. and Cosstick, Richard (1997) 'The Synthesis of 2'-C-Functionalised Nucleosides for Incorporation into Catalytic RNA', Nucleosides, Nucleotides and Nucleic Acids, 16: 7,1497-1501

To link to this Article: DOI: 10.1080/07328319708006215 URL: http://dx.doi.org/10.1080/07328319708006215

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

THE SYNTHESIS OF 2'-C-FUNCTIONALISED NUCLEOSIDES FOR INCORPORATION INTO CATALYTIC RNA

Anthony J. Lawrence, John B. J. Pavey, Ian A. O'Neil* and Richard Cosstick*

Robert Robinson Labs., Dept. of Chemistry, University of Liverpool, P. O. Box 147, Liverpool. L69 3BX. U. K.

<u>ABSTRACT</u>. Five 2'-C-functionalized nucleosides (1-5) have been prepared and incorporated into dinucleoside monophosphates. The effect of the functionality on the stability of the adjacent phosphodiester bond toward hydrolysis by nuclease enzymes and extremes of pH has been assessed.

<u>INTRODUCTION</u> The discovery in the early 1980's that RNA could catalyse reactions was particularly exciting due to the lack of functionality which RNA possesses.¹ In preliminary studies to probe and moderate the activity of ribozymes (catalytic RNA), we have prepared dinucleoside monophosphates containing types of functionality found in proetein based enzymes (FIG. 1), linked to the 2'-centre through a C-C bond.

The 2'-position was chosen as the site of modification for the following reasons. (i) It enables the regular 3'-5' phosphodiester linkages and the Watson-Crick hydrogen bonding scheme to be maintained. (ii) The same modification can be applied to both purine and pyrimidine nucleosides. (iii) It has been shown that introduction of $2'-\alpha$ -alkyl substituents into oligonucleotides increases their resistance to degradation by nucleases.

RESULTS AND DISCUSSION Initially monomers 1-5 were prepared and protected.

The synthesis of 1, 2 and 3 has been described in a previous communication.²

The hydroxymethyl analogue (4) was prepared by an ene reaction of the allyl derivative³ 6 in order to migrate the double bond which was cleaved with ozone. The alcohol was obtained by reductive (NaBH₄) work up of the intermediate ozonide. The alcohol was protected as its acetyl derivative (10) (FIG. 2).

The allyl compound 6 underwent Sharpless asymmetric dihydroxylation⁴ to afford diol (5) as an 82:18 mixture of diastereoisomers. Derivatisation as a dinitrobenzoyl ester (11) allowed separation of the diastereoisomers by recrystallisation. The major isomer was protected as the diacetyl derivative 12 (FIG. 3).

1498 LAWRENCE ET AL.

FIG. 1. Retrosynthesis of the dinucleoside monophosphates. $R=CH_2COOH$ (1), CH_2CONH_2 (2), CH_2CH_2OH (3), CH_2OH (4), $CH_2CH(OH)CH_2OH$ (5). R^P = protected.

FIG. 2. Reagents and Conditions; (i) 4-methyl-1, 2, 4-triazoline-3, 5-dione (1.5 eq.), CH₂Cl₂, 16 h; (ii) O₃, CH₂Cl₂, 10 mins; (iii) NaBH₄ (8 eq.), methanol, 90% (3 steps); (iv) Ac₂O (20 eq.), pyridine, 80%.

FIG. 3. Reagents and Conditions; (i) OsO₄ (0.01 eq.), (DHQD)₂PYR (0.01 eq.), Fe(CN)₆, (3 eq.) K₂CO₃ (3 eq.), *t*-butanol/water (4:1), 2 h; (ii) 3, 5-dinitrobenzoylchloride (2 eq.), pyridine, 16 h; (iii) MeOH/NH₃; (iv) Ac₂O (20 eq.), pyridine, 16 h, 58% (3 steps).

The carboxylic acid analogue (1) was protected as a diphenylmethyl (benzhydryl) ester (8, FIG. 4), chosen due to its bulky nature in order to hinder lactonisation which was previously shown to occur with other protecting groups during desilylation.² The diphenylmethyl group is routinely removed under neutral (H₂, Pd/C) or acidic conditions.⁵ The hydroxyethyl monomer was protected as its Fpmp ether.²

The monomers were derivatised as their 5'-DMT, 3'-phosphoramidites for solid-phase style introduction into oligonucleotides (FIG. 5).

FIG. 4. Reagents and Conditions; (i) Ph₂CN₂ (1.4 eq.), acetone, 79%; (ii) NEt₃·3HF (10 eq.), THF, 80%.

FIG. 5. (2/13/19) $R^P/R = CH_2CONH_2$, (14/20) $R^P/R = CH_2CN$; (8/15) $R^P = CH_2COOCHPh_2$, (21) $R = CH_2COOH$; (9/16) $R^P = CH_2CH_2OFpmp$, (22) $R = CH_2CH_2OH$; (10/17) $R^P = CH_2OAc$, (23) $R = CH_2OH$; (12/18) $R^P = CH_2CH(OAc)CH_2OAc$, $R = CH_2CH(OH)CH_2OH$. Reagents and Conditions; (i) NEt₃·3HF (10 eq.), THF, 70-90%; (ii) DMT-Cl (1.5 eq.), pyridine, CH_2Cl_2 , 1.5 h, 65-90%; (iii) β-cyanoethylbis-N, N, N' .N'-diisopropylaminophosphoramidite (1.1 eq.), diisopropylammonium tetrazolide (0.5 eq.), CH_2Cl_2 , 29-90%; (iv) 2', 3'-di-O-acetyluridine (0.75 eq.), 1*H*-tetrazole (5 eq.), CH_3CN ; (v) deprotection.

The coupling of the amide containing phosphoramidite with di-O-acetyluridine led to a mixture of two products; that arising from the expected reaction to produce the amide containing dimer (13) and that arising from dehydration of the amide functionality to produce the respective nitrile containing dimer (14). The dehydration is believed to take place during oxidation of the intermediate dinucleoside phosphite, a proposed mechanism for this transformation is shown in FIG. 6.

The product composition could be largely controlled by the choice of oxidant. Standard oxidation using 4% I₂ in lutidine/water/THF (1:1:8) gave a 1.5:1 mixture in favour of the amide product (13). Omission of the water from the oxidant gave a ratio of

FIG. 6. Proposed mechanism for the dehydration of the amide functionality during oxidation.

9:1 in favour of the nitrile (14) whilst oxidation using either 70% aqueous *t*-butylhydroperoxide or 10% tetrabutylammonium Oxone® in CH₃CN gave ratios in excess of 20:1 favouring the amide (13).

The dinucleoside monophosphates were tested for their stability toward hydrolysis by both nuclease enzymes and extremes of pH and compared to the wild-type UpU (R = OH, relative $t_{1/2} = 1$ in all cases). The nitrile (20), acid (21) and hydroxymethyl (23) containing dimers showed modest resistance toward snake venom phosphodiesterase (SVPD) (relative $t_{1/2}$ of 18, 29 and 39 respectively). The amide (19) showed reasonable resistance (relative $t_{1/2} = 84$) whilst both the hydroxyethyl (22) and diol (24) containing dimers showed a large increase (relative $t_{1/2} = 129$, 120 respectively). Only the hydroxymethyl dimer (22) showed signs of hydrolysis with nuclease P1 (relative $t_{1/2} > 32$). All dimers were stable to ribonuclease A after incubation for 1 week and also showed no signs of phosphodiester hydrolysis under acidic conditions (2M HCl, 25°C, 4 days). In terms of phosphodiester hydrolysis, only the hydroxymethyl dimer (22) showed signs of hydrolysis ($t_{1/2} \sim 16$ h, 2M NaOH, 50°C) however, both the amide (19) and nitrile (20) were quantitatively converted to the acid (21) after treatment with 2M NaOH for 4 days at 25°C.

In conclusion, six 2'-C-functionalised dinucleoside monophosphates containing either a primary amide (19), a nitrile (20), a carboxylic acid (21), a primary alcohol (22, 23) or a diol (24) have been prepared. All the modified dimers have proved to be more resistant to both nucleases and extremes of pH than UpU.

Acknowledgements. We would like to thank the BBSRC (AJL) and the EPSRC (JBJP) for the provision of studentships and Mr A. Mills (Liverpool U.K.)/EPSRC service (Swansea U.K.) and Dr P. Leonard for obtaining mass spectra and high resolution nmr spectra

REFERENCES

- (a) Altman, S. Angew. Chem. Int. Ed. Engl. 1990, 29, 749-758.
 (b) Cech, T. R. Angew. Chem. Int. Ed. Engl. 1990, 29, 759-768.
- Lawrence, A. J.; Pavey, J. B. J.; O'Neil, I. A.; Cosstick, R. Tetrahedron Lett. 1995, 36, 6341-6344.

- De Mesmaeker, A.; Lebreton, J.; Hoffman, P.; Frier, S. M. Synlett 1993, 677-679.
 Sharpless, K. B.; Hartung, J.; Jeong, K. S.; Kwong, H. L.; Morikawa, K.; Wang, Z. M.; Xu, D.; Zhang, X. L. J. Org. Chem. 1992, 57, 2768.
 Stelakatos, G. C.; Paganou, A.; Zervas, L. J. Chem. Soc. (C) 1966, 1191-1199.